Geometry Lesson- The Pythagorean Theorem

The Pythagorean Theorem:
In a right triangle, $a^{2}+b^{2}=c^{2}$, where a and b are the legs of the triangle and c is the hypotenuse. OR
The sum of the squares of the legs of a right triangle is equal to the square of the hypotenuse.

Ex 1-A right triangle has legs of length 16 and 30. Find the length of the hypotenuse.

$$
\begin{aligned}
& 16^{2}+30^{2}=c^{2} \\
& 256+900=c^{2} \\
& 1156=c^{2} \\
& \sqrt{1156}=\sqrt{c^{2}} \\
& c=34
\end{aligned}
$$

Ex 2- A right triangle has a hypotenuse of length 25 and a leg of length 10. Find the length of the other leg.

$$
\begin{aligned}
& a^{2}+7^{2}=25^{2} \\
& a^{2}+49=625 \\
& a^{2}=576 \\
& \sqrt{a^{2}}=\sqrt{576} \\
& a=24
\end{aligned}
$$

Ex 3-Simplify each square root using prime factorization trees.
(a) $\sqrt{8}$

$$
2 \sqrt{2}
$$

(b) $\sqrt{75}$

$$
5 \sqrt{3}
$$

(c) $\sqrt{108}$

Ex 4-Find the value of x in each triangle. Leave your answer in simplest radical form.

$$
\begin{aligned}
& x^{2}+7^{2}=11^{2} \\
& x^{2}+49=121 \\
& x^{2}=72 \\
& \sqrt{x^{2}}=\sqrt{72} \\
& x=6 \sqrt{2}
\end{aligned}
$$

7

$$
\begin{aligned}
& 4^{2}+8^{2}=x^{2} \\
& 16+64=x^{2} \\
& 80=x^{2} \\
& \sqrt{80}=\sqrt{x^{2}} \\
& x=4 \sqrt{5}
\end{aligned}
$$

